Pandas 기초 사용법
1. 생성, 쓰기, 읽기
import pandas as pd
데이터 생성
pd.DataFrame({'컬럼1': [33, 40], '컬럼2': [42, 21]})
컬럼1 | 컬럼2 | |
---|---|---|
0 | 33 | 42 |
1 | 40 | 21 |
pd.DataFrame({'철수': ['남자', 183], '영희': ['여자', 162]})
철수 | 영희 | |
---|---|---|
0 | 남자 | 여자 |
1 | 183 | 162 |
pd.DataFrame({'철수': ['남자', 183], '영희': ['여자', 162]},
index=['성별', '키'])
철수 | 영희 | |
---|---|---|
성별 | 남자 | 여자 |
키 | 183 | 162 |
시리즈
pd.Series([1, 2, 3, 4, 5])
0 1
1 2
2 3
3 4
4 5
dtype: int64
pd.Series([30, 35, 40], index=['2015년 세일', '2016년 세일', '2017년 세일'], name='상품')
2015년 세일 30
2016년 세일 35
2017년 세일 40
Name: 상품, dtype: int64
파일 데이터 읽기
movies = pd.read_csv("movies.csv")
movies.head()
Unnamed: 0 | movieId | title | genres | userId | rating | timestamp | |
---|---|---|---|---|---|---|---|
0 | 0 | 1 | Toy Story (1995) | Adventure | 2 | 3.5 | 1141415820 |
1 | 1 | 1 | Toy Story (1995) | Adventure | 3 | 4.0 | 1439472215 |
2 | 2 | 1 | Toy Story (1995) | Adventure | 4 | 3.0 | 1573944252 |
3 | 3 | 1 | Toy Story (1995) | Adventure | 5 | 4.0 | 858625949 |
4 | 4 | 1 | Toy Story (1995) | Adventure | 8 | 4.0 | 890492517 |
movies.shape
(2124594, 7)
movies = pd.read_csv("movies.csv", index_col=0)
movies.head()
movieId | title | genres | userId | rating | timestamp | |
---|---|---|---|---|---|---|
0 | 1 | Toy Story (1995) | Adventure | 2 | 3.5 | 1141415820 |
1 | 1 | Toy Story (1995) | Adventure | 3 | 4.0 | 1439472215 |
2 | 1 | Toy Story (1995) | Adventure | 4 | 3.0 | 1573944252 |
3 | 1 | Toy Story (1995) | Adventure | 5 | 4.0 | 858625949 |
4 | 1 | Toy Story (1995) | Adventure | 8 | 4.0 | 890492517 |
movies.shape
(2124594, 6)
2. 인덱스 선택 및 할당
movies.title
0 Toy Story (1995)
1 Toy Story (1995)
2 Toy Story (1995)
3 Toy Story (1995)
4 Toy Story (1995)
...
2124589 City Hall (1996)
2124590 City Hall (1996)
2124591 City Hall (1996)
2124592 City Hall (1996)
2124593 City Hall (1996)
Name: title, Length: 2124594, dtype: object
movies['title']
0 Toy Story (1995)
1 Toy Story (1995)
2 Toy Story (1995)
3 Toy Story (1995)
4 Toy Story (1995)
...
2124589 City Hall (1996)
2124590 City Hall (1996)
2124591 City Hall (1996)
2124592 City Hall (1996)
2124593 City Hall (1996)
Name: title, Length: 2124594, dtype: object
movies['title'][1]
'Toy Story (1995)'
인덱스 행 번호로 선택 (iloc)
movies.iloc[0]
movieId 1
title Toy Story (1995)
genres Adventure
userId 2
rating 3.5
timestamp 1141415820
Name: 0, dtype: object
# 첫번째 인자 : 행
# 두번째 인자 : 열
movies.iloc[:,0]
0 1
1 1
2 1
3 1
4 1
...
2124589 100
2124590 100
2124591 100
2124592 100
2124593 100
Name: movieId, Length: 2124594, dtype: int64
movies.iloc[:3,0]
0 1
1 1
2 1
Name: movieId, dtype: int64
movies.iloc[1:3,0]
1 1
2 1
Name: movieId, dtype: int64
movies.iloc[[0, 1, 2], 0]
0 1
1 1
2 1
Name: movieId, dtype: int64
movies.iloc[-5:]
인덱스 정보를 활용하여 선택 (loc)
movies.loc[1, 'title']
'Toy Story (1995)'
movies.loc[:, ['title', 'genres']]
title | genres | |
---|---|---|
0 | Toy Story (1995) | Adventure |
1 | Toy Story (1995) | Adventure |
2 | Toy Story (1995) | Adventure |
3 | Toy Story (1995) | Adventure |
4 | Toy Story (1995) | Adventure |
... | ... | ... |
2124589 | City Hall (1996) | Thriller |
2124590 | City Hall (1996) | Thriller |
2124591 | City Hall (1996) | Thriller |
2124592 | City Hall (1996) | Thriller |
2124593 | City Hall (1996) | Thriller |
인덱스 조작
movies.set_index("title")
movieId | genres | userId | rating | timestamp | |
---|---|---|---|---|---|
title | |||||
Toy Story (1995) | 1 | Adventure | 2 | 3.5 | 1141415820 |
Toy Story (1995) | 1 | Adventure | 3 | 4.0 | 1439472215 |
Toy Story (1995) | 1 | Adventure | 4 | 3.0 | 1573944252 |
Toy Story (1995) | 1 | Adventure | 5 | 4.0 | 858625949 |
Toy Story (1995) | 1 | Adventure | 8 | 4.0 | 890492517 |
... | ... | ... | ... | ... | ... |
City Hall (1996) | 100 | Thriller | 162445 | 3.0 | 939556195 |
City Hall (1996) | 100 | Thriller | 162454 | 3.0 | 838259221 |
City Hall (1996) | 100 | Thriller | 162479 | 3.0 | 850136396 |
City Hall (1996) | 100 | Thriller | 162504 | 3.0 | 848591738 |
City Hall (1996) | 100 | Thriller | 162507 | 3.0 | 866722978 |
인덱스 조건 검색
movies.genres == 'Drama'
0 False
1 False
2 False
3 False
4 False
...
2124589 False
2124590 False
2124591 False
2124592 False
2124593 False
Name: genres, Length: 2124594, dtype: bool
movies.loc[movies.genres == 'Drama']
movieId | title | genres | userId | rating | timestamp | |
---|---|---|---|---|---|---|
385360 | 4 | Waiting to Exhale (1995) | Drama | 141 | 3.0 | 838711786 |
385361 | 4 | Waiting to Exhale (1995) | Drama | 175 | 3.0 | 992403830 |
385362 | 4 | Waiting to Exhale (1995) | Drama | 230 | 3.0 | 862580281 |
385363 | 4 | Waiting to Exhale (1995) | Drama | 236 | 4.0 | 848680533 |
385364 | 4 | Waiting to Exhale (1995) | Drama | 484 | 4.0 | 857579144 |
... | ... | ... | ... | ... | ... | ... |
2120819 | 100 | City Hall (1996) | Drama | 162445 | 3.0 | 939556195 |
2120820 | 100 | City Hall (1996) | Drama | 162454 | 3.0 | 838259221 |
2120821 | 100 | City Hall (1996) | Drama | 162479 | 3.0 | 850136396 |
2120822 | 100 | City Hall (1996) | Drama | 162504 | 3.0 | 848591738 |
2120823 | 100 | City Hall (1996) | Drama | 162507 | 3.0 | 866722978 |
movies.loc[(movies.genres == 'Drama') & (movies.rating > 3)]
movieId | title | genres | userId | rating | timestamp | |
---|---|---|---|---|---|---|
385363 | 4 | Waiting to Exhale (1995) | Drama | 236 | 4.0 | 848680533 |
385364 | 4 | Waiting to Exhale (1995) | Drama | 484 | 4.0 | 857579144 |
385365 | 4 | Waiting to Exhale (1995) | Drama | 528 | 4.0 | 844766853 |
385380 | 4 | Waiting to Exhale (1995) | Drama | 1906 | 4.0 | 836349383 |
385382 | 4 | Waiting to Exhale (1995) | Drama | 1979 | 4.0 | 840312031 |
... | ... | ... | ... | ... | ... | ... |
2120801 | 100 | City Hall (1996) | Drama | 161576 | 4.0 | 866474998 |
2120803 | 100 | City Hall (1996) | Drama | 161631 | 4.0 | 864258224 |
2120807 | 100 | City Hall (1996) | Drama | 161910 | 4.0 | 963683808 |
2120811 | 100 | City Hall (1996) | Drama | 162068 | 4.0 | 876851667 |
2120818 | 100 | City Hall (1996) | Drama | 162377 | 4.0 | 855400509 |
movies.loc[(movies.genres == 'Drama') | (movies.rating > 3)]
movieId | title | genres | userId | rating | timestamp | |
---|---|---|---|---|---|---|
0 | 1 | Toy Story (1995) | Adventure | 2 | 3.5 | 1141415820 |
1 | 1 | Toy Story (1995) | Adventure | 3 | 4.0 | 1439472215 |
3 | 1 | Toy Story (1995) | Adventure | 5 | 4.0 | 858625949 |
4 | 1 | Toy Story (1995) | Adventure | 8 | 4.0 | 890492517 |
5 | 1 | Toy Story (1995) | Adventure | 10 | 3.5 | 1227571347 |
... | ... | ... | ... | ... | ... | ... |
2124571 | 100 | City Hall (1996) | Thriller | 161576 | 4.0 | 866474998 |
2124573 | 100 | City Hall (1996) | Thriller | 161631 | 4.0 | 864258224 |
2124577 | 100 | City Hall (1996) | Thriller | 161910 | 4.0 | 963683808 |
2124581 | 100 | City Hall (1996) | Thriller | 162068 | 4.0 | 876851667 |
2124588 | 100 | City Hall (1996) | Thriller | 162377 | 4.0 | 855400509 |
movies.loc[movies.genres.isin(['Drama', 'Comedy'])]
movieId | title | genres | userId | rating | timestamp | |
---|---|---|---|---|---|---|
171927 | 1 | Toy Story (1995) | Comedy | 2 | 3.5 | 1141415820 |
171928 | 1 | Toy Story (1995) | Comedy | 3 | 4.0 | 1439472215 |
171929 | 1 | Toy Story (1995) | Comedy | 4 | 3.0 | 1573944252 |
171930 | 1 | Toy Story (1995) | Comedy | 5 | 4.0 | 858625949 |
171931 | 1 | Toy Story (1995) | Comedy | 8 | 4.0 | 890492517 |
... | ... | ... | ... | ... | ... | ... |
2120819 | 100 | City Hall (1996) | Drama | 162445 | 3.0 | 939556195 |
2120820 | 100 | City Hall (1996) | Drama | 162454 | 3.0 | 838259221 |
2120821 | 100 | City Hall (1996) | Drama | 162479 | 3.0 | 850136396 |
2120822 | 100 | City Hall (1996) | Drama | 162504 | 3.0 | 848591738 |
2120823 | 100 | City Hall (1996) | Drama | 162507 | 3.0 | 866722978 |
movies.loc[movies.title.notnull()]
movieId | title | genres | userId | rating | timestamp | |
---|---|---|---|---|---|---|
0 | 1 | Toy Story (1995) | Adventure | 2 | 3.5 | 1141415820 |
1 | 1 | Toy Story (1995) | Adventure | 3 | 4.0 | 1439472215 |
2 | 1 | Toy Story (1995) | Adventure | 4 | 3.0 | 1573944252 |
3 | 1 | Toy Story (1995) | Adventure | 5 | 4.0 | 858625949 |
4 | 1 | Toy Story (1995) | Adventure | 8 | 4.0 | 890492517 |
... | ... | ... | ... | ... | ... | ... |
2124589 | 100 | City Hall (1996) | Thriller | 162445 | 3.0 | 939556195 |
2124590 | 100 | City Hall (1996) | Thriller | 162454 | 3.0 | 838259221 |
2124591 | 100 | City Hall (1996) | Thriller | 162479 | 3.0 | 850136396 |
2124592 | 100 | City Hall (1996) | Thriller | 162504 | 3.0 | 848591738 |
2124593 | 100 | City Hall (1996) | Thriller | 162507 | 3.0 | 866722978 |
데이터 할당
movies['country'] = 'korea'
movies['country']
0 korea
1 korea
2 korea
3 korea
4 korea
...
2124589 korea
2124590 korea
2124591 korea
2124592 korea
2124593 korea
Name: country, Length: 2124594, dtype: object
movies['index_backwards'] = range(len(movies), 0, -1)
movies['index_backwards']
0 2124594
1 2124593
2 2124592
3 2124591
4 2124590
...
2124589 5
2124590 4
2124591 3
2124592 2
2124593 1
Name: index_backwards, Length: 2124594, dtype: int64
3. 요약 함수 및 맵
요약 함수
movies.title.describe()
count 2124594
unique 99
top Toy Story (1995)
freq 286545
Name: title, dtype: object
movies.genres.describe()
count 2124594
unique 17
top Thriller
freq 311176
Name: genres, dtype: object
movies.rating.mean()
3.6029992083193307
movies.genres.unique()
array(['Adventure', 'Animation', 'Children', 'Comedy', 'Fantasy',
'Romance', 'Drama', 'Action', 'Crime', 'Thriller', 'Horror',
'Mystery', 'Sci-Fi', 'IMAX', 'Documentary', 'War', 'Musical'],
dtype=object)
movies.genres.value_counts()
Thriller 311176
Drama 298704
Comedy 268791
Mystery 170739
Romance 170185
Crime 169761
Adventure 165345
Children 140118
Action 129869
Fantasy 106496
Animation 72485
Sci-Fi 68259
Horror 31146
Musical 13461
War 6965
Documentary 954
IMAX 140
Name: genres, dtype: int64
4. 그룹핑 및 정렬
그룹핑
movies.groupby('geners').rating.count()
genres
Action 129869
Adventure 165345
Animation 72485
Children 140118
Comedy 268791
Crime 169761
Documentary 954
Drama 298704
Fantasy 106496
Horror 31146
IMAX 140
Musical 13461
Mystery 170739
Romance 170185
Sci-Fi 68259
Thriller 311176
War 6965
Name: rating, dtype: int64
movies.groupby('geners').rating.min()
genres
Action 0.5
Adventure 0.5
Animation 0.5
Children 0.5
Comedy 0.5
Crime 0.5
Documentary 0.5
Drama 0.5
Fantasy 0.5
Horror 0.5
IMAX 0.5
Musical 0.5
Mystery 0.5
Romance 0.5
Sci-Fi 0.5
Thriller 0.5
War 0.5
Name: rating, dtype: float64
movies.groupby('geners').apply(lambda df: df.title.iloc[0])
genres
Action Heat (1995)
Adventure Toy Story (1995)
Animation Toy Story (1995)
Children Toy Story (1995)
Comedy Toy Story (1995)
Crime Heat (1995)
Documentary Across the Sea of Time (1995)
Drama Waiting to Exhale (1995)
Fantasy Toy Story (1995)
Horror Dracula: Dead and Loving It (1995)
IMAX Wings of Courage (1995)
Musical Pocahontas (1995)
Mystery Copycat (1995)
Romance Grumpier Old Men (1995)
Sci-Fi Powder (1995)
Thriller Heat (1995)
War Richard III (1995)
dtype: object
멀티 인덱스
title_genres = movies.groupby(['title', 'genres']).userId.agg([len])
title_genres
len | ||
---|---|---|
title | genres | |
Ace Ventura: When Nature Calls (1995) | Comedy | 21552 |
Across the Sea of Time (1995) | Documentary | 75 |
IMAX | 75 | |
American President, The (1995) | Comedy | 17042 |
Drama | 17042 | |
... | ... | ... |
White Squall (1996) | Adventure | 3921 |
Drama | 3921 | |
Wings of Courage (1995) | Adventure | 65 |
IMAX | 65 | |
Romance | 65 |
mi = title_genres.index
type(mi)
pandas.core.indexes.multi.MultiIndex
title_genres.reset_index()
title | genres | len | |
---|---|---|---|
0 | Ace Ventura: When Nature Calls (1995) | Comedy | 21552 |
1 | Across the Sea of Time (1995) | Documentary | 75 |
2 | Across the Sea of Time (1995) | IMAX | 75 |
3 | American President, The (1995) | Comedy | 17042 |
4 | American President, The (1995) | Drama | 17042 |
... | ... | ... | ... |
221 | White Squall (1996) | Adventure | 3921 |
222 | White Squall (1996) | Drama | 3921 |
223 | Wings of Courage (1995) | Adventure | 65 |
224 | Wings of Courage (1995) | IMAX | 65 |
225 | Wings of Courage (1995) | Romance | 65 |
정렬
title_genres = title_genres.reset_index()
title_genres.sort_values(by='len')
title | genres | len | |
---|---|---|---|
94 | Guardian Angel (1994) | Drama | 28 |
95 | Guardian Angel (1994) | Thriller | 28 |
93 | Guardian Angel (1994) | Action | 28 |
225 | Wings of Courage (1995) | Romance | 65 |
224 | Wings of Courage (1995) | IMAX | 65 |
... | ... | ... | ... |
200 | Toy Story (1995) | Fantasy | 57309 |
199 | Toy Story (1995) | Comedy | 57309 |
198 | Toy Story (1995) | Children | 57309 |
196 | Toy Story (1995) | Adventure | 57309 |
197 | Toy Story (1995) | Animation | 57309 |
title_genres.sort_values(by='len', ascending=False)
title | genres | len | |
---|---|---|---|
199 | Toy Story (1995) | Comedy | 57309 |
200 | Toy Story (1995) | Fantasy | 57309 |
198 | Toy Story (1995) | Children | 57309 |
197 | Toy Story (1995) | Animation | 57309 |
196 | Toy Story (1995) | Adventure | 57309 |
... | ... | ... | ... |
119 | Kids of the Round Table (1995) | Adventure | 65 |
225 | Wings of Courage (1995) | Romance | 65 |
94 | Guardian Angel (1994) | Drama | 28 |
93 | Guardian Angel (1994) | Action | 28 |
95 | Guardian Angel (1994) | Thriller | 28 |
title_genres.sort_index()
title | genres | len | |
---|---|---|---|
0 | Ace Ventura: When Nature Calls (1995) | Comedy | 21552 |
1 | Across the Sea of Time (1995) | Documentary | 75 |
2 | Across the Sea of Time (1995) | IMAX | 75 |
3 | American President, The (1995) | Comedy | 17042 |
4 | American President, The (1995) | Drama | 17042 |
... | ... | ... | ... |
221 | White Squall (1996) | Adventure | 3921 |
222 | White Squall (1996) | Drama | 3921 |
223 | Wings of Courage (1995) | Adventure | 65 |
224 | Wings of Courage (1995) | IMAX | 65 |
225 | Wings of Courage (1995) | Romance | 65 |
title_genres.sort_values(by=['genres', 'len'])
title | genres | len | |
---|---|---|---|
93 | Guardian Angel (1994) | Action | 28 |
184 | Shopping (1994) | Action | 83 |
52 | Crossing Guard, The (1995) | Action | 1129 |
74 | Fair Game (1995) | Action | 1202 |
127 | Lawnmower Man 2: Beyond Cyberspace (1996) | Action | 2215 |
... | ... | ... | ... |
203 | Twelve Monkeys (a.k.a. 12 Monkeys) (1995) | Thriller | 47054 |
181 | Seven (a.k.a. Se7en) (1995) | Thriller | 50596 |
209 | Usual Suspects, The (1995) | Thriller | 55366 |
139 | Misérables, Les (1995) | War | 2699 |
172 | Richard III (1995) | War | 4266 |
5. 데이터 타입과 값
movies.rating.dtype
dtype('float64')
movies.dtypes
movieId int64
title object
genres object
userId int64
rating float64
timestamp int64
country object
index_backwards int64
dtype: object
movies.index_backwards.astype('float64')
0 2124594.0
1 2124593.0
2 2124592.0
3 2124591.0
4 2124590.0
...
2124589 5.0
2124590 4.0
2124591 3.0
2124592 2.0
2124593 1.0
Name: index_backwards, Length: 2124594, dtype: float64
movies.index_backwards.dtype
dtype('int64')
movies[pd.isnull(movies.title)]
movies.title.fillna("Unknown")
0 Toy Story (1995)
1 Toy Story (1995)
2 Toy Story (1995)
3 Toy Story (1995)
4 Toy Story (1995)
...
2124589 City Hall (1996)
2124590 City Hall (1996)
2124591 City Hall (1996)
2124592 City Hall (1996)
2124593 City Hall (1996)
Name: title, Length: 2124594, dtype: object
movies.title.replace("Toy", "TEST")
6. 이름 변경 및 병합
이름 변경
movies.rename(columns={'rating': 'score'})
movieId | title | genres | userId | score | timestamp | country | index_backwards | |
---|---|---|---|---|---|---|---|---|
0 | 1 | Toy Story (1995) | Adventure | 2 | 3.5 | 1141415820 | korea | 2124594 |
1 | 1 | Toy Story (1995) | Adventure | 3 | 4.0 | 1439472215 | korea | 2124593 |
2 | 1 | Toy Story (1995) | Adventure | 4 | 3.0 | 1573944252 | korea | 2124592 |
3 | 1 | Toy Story (1995) | Adventure | 5 | 4.0 | 858625949 | korea | 2124591 |
4 | 1 | Toy Story (1995) | Adventure | 8 | 4.0 | 890492517 | korea | 2124590 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
2124589 | 100 | City Hall (1996) | Thriller | 162445 | 3.0 | 939556195 | korea | 5 |
2124590 | 100 | City Hall (1996) | Thriller | 162454 | 3.0 | 838259221 | korea | 4 |
2124591 | 100 | City Hall (1996) | Thriller | 162479 | 3.0 | 850136396 | korea | 3 |
2124592 | 100 | City Hall (1996) | Thriller | 162504 | 3.0 | 848591738 | korea | 2 |
2124593 | 100 | City Hall (1996) | Thriller | 162507 | 3.0 | 866722978 | korea | 1 |
movies.rename(index={0: 'firstEntry', 1: 'secondEntry'})
movieId | title | genres | userId | rating | timestamp | country | index_backwards | |
---|---|---|---|---|---|---|---|---|
firstEntry | 1 | Toy Story (1995) | Adventure | 2 | 3.5 | 1141415820 | korea | 2124594 |
secondEntry | 1 | Toy Story (1995) | Adventure | 3 | 4.0 | 1439472215 | korea | 2124593 |
2 | 1 | Toy Story (1995) | Adventure | 4 | 3.0 | 1573944252 | korea | 2124592 |
3 | 1 | Toy Story (1995) | Adventure | 5 | 4.0 | 858625949 | korea | 2124591 |
4 | 1 | Toy Story (1995) | Adventure | 8 | 4.0 | 890492517 | korea | 2124590 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
2124589 | 100 | City Hall (1996) | Thriller | 162445 | 3.0 | 939556195 | korea | 5 |
2124590 | 100 | City Hall (1996) | Thriller | 162454 | 3.0 | 838259221 | korea | 4 |
2124591 | 100 | City Hall (1996) | Thriller | 162479 | 3.0 | 850136396 | korea | 3 |
2124592 | 100 | City Hall (1996) | Thriller | 162504 | 3.0 | 848591738 | korea | 2 |
2124593 | 100 | City Hall (1996) | Thriller | 162507 | 3.0 | 866722978 | korea | 1 |
movies.rename_axis("country", axis='rows').rename_axis("fields", axis='columns')
fields | movieId | title | genres | userId | rating | timestamp | country | index_backwards |
---|---|---|---|---|---|---|---|---|
country | ||||||||
0 | 1 | Toy Story (1995) | Adventure | 2 | 3.5 | 1141415820 | korea | 2124594 |
1 | 1 | Toy Story (1995) | Adventure | 3 | 4.0 | 1439472215 | korea | 2124593 |
2 | 1 | Toy Story (1995) | Adventure | 4 | 3.0 | 1573944252 | korea | 2124592 |
3 | 1 | Toy Story (1995) | Adventure | 5 | 4.0 | 858625949 | korea | 2124591 |
4 | 1 | Toy Story (1995) | Adventure | 8 | 4.0 | 890492517 | korea | 2124590 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
2124589 | 100 | City Hall (1996) | Thriller | 162445 | 3.0 | 939556195 | korea | 5 |
2124590 | 100 | City Hall (1996) | Thriller | 162454 | 3.0 | 838259221 | korea | 4 |
2124591 | 100 | City Hall (1996) | Thriller | 162479 | 3.0 | 850136396 | korea | 3 |
2124592 | 100 | City Hall (1996) | Thriller | 162504 | 3.0 | 848591738 | korea | 2 |
2124593 | 100 | City Hall (1996) | Thriller | 162507 | 3.0 | 866722978 | korea | 1 |
'데이터 분석' 카테고리의 다른 글
python 파일 용량이 큰 파일을 읽을 경우 (0) | 2022.09.01 |
---|---|
pandas, pyplot로 데이터를 시각화해보자 (0) | 2022.03.09 |
Pandas 구분자로 되어 있는 행 여러 줄 행으로 만들기 (0) | 2022.03.03 |