728x90
반응형
1. 백 트래킹 기법
- 백트래킹 (backtracking) 또는 퇴각 검색 (backtrack)으로 부름
- 제약 조건 만족 문제 (Constraint Satisfaction Problem) 에서 해를 찾기 위한 전략
- 해를 찾기 위해, 후보군에 제약 조건을 점진적으로 체크하다가, 해당 후보군이 제약 조건을 만족할 수 없다고 판단되는 즉시 backtrack (다시는 이 후보군을 체크하지 않을 것을 표기)하고, 바로 다른 후보군으로 넘어가며, 결국 최적의 해를 찾는 방법이다.
- 실제 구현시, 고려할 수 있는 모든 경우의 수 (후보군)를 상태공간트리(State Space Tree)를 통해 표현
- 각 후보군을 DFS 방식으로 확인
- 상태 공간 트리를 탐색하면서, 제약이 맞지 않으면 해의 후보가 될만한 곳으로 바로 넘어가서 탐색
- Promising: 해당 루트가 조건에 맞는지를 검사하는 기법
- Pruning (가지치기): 조건에 맞지 않으면 포기하고 다른 루트로 바로 돌아서서, 탐색의 시간을 절약하는 기법
2. N-Quuen 문제
- 대표적인 백트래킹 문제
- NxN 크기의 체스판에 N개의 퀸을 서로 공격할 수 없도록 배치하는 문제
- 퀸은 다음과 같이 이동할 수 있으므로, 배치된 퀸 간에 공격할 수 없는 위치로 배치해야 함
Pruning (가지치기) for N Queen 문제
- 한 행에는 하나의 퀸 밖에 위치할 수 없음 (퀸은 수평 이동이 가능하므로)
- 맨 위에 있는 행부터 퀸을 배치하고, 다음 행에 해당 퀸이 이동할 수 없는 위치를 찾아 퀸을 배치
- 만약 앞선 행에 배치한 퀸으로 인해, 다음 행에 해당 퀸들이 이동할 수 없는 위치가 없을 경우에는, 더 이상 퀸을 배치하지 않고, 이전 행의 퀸의 배치를 바꿈
- 즉, 맨 위의 행부터 전체 행까지 퀸의 배치가 가능한 경우의 수를 상태 공간 트리 형태로 만든 후, 각 경우를 맨 위의 행부터 DFS 방식으로 접근, 해당 경우가 진행이 어려울 경우, 더 이상 진행하지 않고, 다른 경우를 체크하는 방식
Promising for N Queen 문제
- 해당 루트가 조건에 맞는지를 검사하는 기법을 활용하여,
- 현재까지 앞선 행에서 배치한 퀸이 이동할 수 없는 위치가 있는지를 다음과 같은 조건으로 확인
- 한 행에 어차피 하나의 퀸만 배치 가능하므로 수평 체크는 별도로 필요하지 않음
문제 풀이
def is_avaliable(candidates, curr_col):
curr_row = len(candidates)
for row in range(curr_row):
if candidates[row] == curr_col or abs(candidates[row] - curr_col) == curr_row - row:
return False
return True
def dfs(curr_row, N, candidates, rst):
if curr_row == N:
rst.append(list(candidates))
return
for curr_col in range(N):
if is_avaliable(candidates, curr_col):
candidates.append(curr_col)
dfs(curr_row + 1, N, candidates, rst)
candidates.pop()
def solution(N):
rst = []
dfs(0, N, [], rst)
return rst
N = 4
answer = solution(N)
print('>>> answer: {}'.format(answer))
※ 아래와 같이 출처를 명시합니다.
출처 : https://www.fun-coding.org/Chapter21-backtracking-live.html
728x90
반응형